Imaging Hydrological Processes in Headwater Riparian Seeps with Time-Lapse Electrical Resistivity.
نویسندگان
چکیده
Delineating hydrologic and pedogenic factors influencing groundwater flow in riparian zones is central in understanding pathways of water and nutrient transport. In this study, we combined two-dimensional time-lapse electrical resistivity imaging (ERI) (depth of investigation approximately 2 m) with hydrometric monitoring to examine hydrological processes in the riparian area of FD-36, a small (0.4 km2 ) agricultural headwater basin in the Valley and Ridge region of east-central Pennsylvania. We selected two contrasting study sites, including a seep with groundwater discharge and an adjacent area lacking such seepage. Both sites were underlain by a fragipan at 0.6 m. We then monitored changes in electrical resistivity, shallow groundwater, and nitrate-N concentrations as a series of storms transitioned the landscape from dry to wet conditions. Time-lapse ERI revealed different resistivity patterns between seep and non-seep areas during the study period. Notably, the seep displayed strong resistivity reductions (∼60%) along a vertically aligned region of the soil profile, which coincided with strong upward hydraulic gradients recorded in a grid of nested piezometers (0.2- and 0.6-m depth). These patterns suggested a hydraulic connection between the seep and the nitrate-rich shallow groundwater system below the fragipan, which enabled groundwater and associated nitrate-N to discharge through the fragipan to the surface. In contrast, time-lapse ERI indicated no such connections in the non-seep area, with infiltrated rainwater presumably perched above the fragipan. Results highlight the value of pairing time-lapse ERI with hydrometric and water quality monitoring to illuminate possible groundwater and nutrient flow pathways to seeps in headwater riparian areas.
منابع مشابه
Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method
Protection of water resources from contamination and detection of the contaminants and their treatments are among the essential issues in the management of water resources. In this work, the time-lapse electrical resistivity tomography (ERT) surveys were conducted along 7 longitudinal lines in the downstream of the Latian dam in Jajrood (Iran), in order to detect the contamination resulting fro...
متن کاملWhat happens after the catchment caught the storm ? Hydrological processes at the small , semi - arid Weatherley catchment , South - Africa
The knowledge of water flow pathways and residence times in a catchment are essential for predicting the hydrological response to a rain storm event. Different experimental techniques are available to study these processes, which are briefly reviewed in this paper. To illustrate this, recent findings from the Weatherley catchment a 1.5 km 2 semi-arid headwater in South-Africa, are reported in t...
متن کاملGroundwater Seepage and Dissolved Organic Carbon Flux in an Appalachian Catchment
Riparian zones with extensive groundwater seeps may allow short-circuiting of groundwater to stream channels and modify groundwater contact with shallow organic soil layers in riparian areas. The controls on dissolved organic carbon (DOC) export to an Appalachian headwater stream were examined at Baldwin Creek (southwestern Pennsylvania), where baseflow is derived from multiple surface seeps. D...
متن کاملInfluence of Riparian Seepage Zones on Nitrate Variability in Two Agricultural Headwater Streams
Riparian seeps have been recognized for their contributions to stream flow in headwater catchments, but there is limited data on how seeps affect stream water quality. The objective of this study was to examine the effect of seeps on the variability of stream NO3-N concentrations in FD36 and RS, two agricultural catchments in Pennsylvania. Stream samples were collected at 10-m intervals over re...
متن کاملHydrological hysteresis and its value for assessing process consistency in catchment conceptual models
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and anothe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ground water
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2017